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Abstract. Bullets are fired, one per second, along the positive real line with independent

and identically distributed speeds. Collisions result in mutual annihilation. For bullet
speeds sampled uniformly from any finite set, we establish a phase transition for survival
of the first bullet. We also exhibit a family of continuous speed distributions where, if
the first bullet has speed in the lower half of the distribution, then it is almost surely

annihilated.

1. Introduction

The bullet process is among the simplest of annihilating ballistic systems. Such systems
have been around since the 1970’s, but very little progress has been made. The combination
of simplicity and difficulty make the bullet problem compelling and, according to many,
rather addictive. It can be described in three sentences: Each second, a bullet is fired from
the origin along the positive real line with a speed uniformly sampled from (0, 1). When
a faster bullet collides with a slower one, they mutually annihilate. Is the probability the
first bullet survives strictly between 0 and 1? Though our results do not include the case
of Uniform(0,1) speeds, our main theorem suggests the conjectured phase transition in the
classical bullet problem and lays out an approach for proving this.

We study two variants that modify the speed distribution of the bullets. In one, the
example to keep in mind is when bullet speeds are uniformly selected from a discrete set. For
this, and slightly more general speed distributions, we establish a phase transition for survival
of the first bullet. In another variant, we provide a class of continuous speed distributions
for which the first bullet perishes with probability at least one half.

To our knowledge, this is the first published work on the bullet process. We learned
near the end of this project our Theorem 4 (that for certain distributions the slower half
of bullets perish) was known to Vladas Sidoravicious and Laurent Tournier. Their result is
unpublished and is for an equivalent process they introduced known as the arrow process.
More details are in Section 1.3.

1.1. Theorem statements. Let us introduce some notation and define the bullet process
a bit more formally. Consider bullets {b1, b2, . . .} fired from the origin along the real line
such that bi+1 is fired one second after bi for all i ≥ 1. This delay between firings is not so
important. All of the results here also hold for exponentially distributed firing times.

The speed of bullet bi is denoted by s(bi). The bullets have independent and identically
distributed (i.i.d.) speeds. We assume that the speeds are obtained from a probability space
(S, µ) with S ⊆ (0,∞) and µ a probability measure on S. When two or more bullets collide,
all of them are annihilated. We will refer to this as an (S, µ)-bullet process.

Let bi 7→ bj denote the event of bullet bi colliding into bj , thus resulting in their mutual
annihilation. We say that bi catches bj . Note that this can only happen if i > j and
s(bi) > s(bj). Define τ to be the minimum index with bτ 7→ b1. The minimum is to account
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for the possibility of a simultaneous collision of several bullets. If b1 is never caught by
another bullet, set τ = ∞. When τ = ∞, we say that b1 survives. When τ < ∞, we say
that b1 perishes. Our main result is a non-trivial phase transition when the bullet speeds
are uniformly sampled from a finite set.

Theorem 1. Suppose bullet speeds are uniformly sampled from {sn, sn−1, . . . , s1} ⊆ (0,∞)
with sn < sn−1 < · · · < s2 < s1 arbitrary, but fixed.

(i) If the first bullet has the second fastest speed, then it survives with positive probability:

P[b1 survives | s(b1) = s2] > 0.

(ii) If the first bullet has the slowest speed, then it perishes almost surely:

P[b1 perishes | s(b1) = sn] = 1.

Note that survival of b1 when it has maximal speed is trivial. The canonical coupling (that
aligns s(bi) for i ≥ 2) guarantees that the probability the first bullet survives is monotonically
increasing with respect to its speed. This monotonicity, along with Theorem 1 imply that
there is a speed si∗ at which an initial bullet slower than si∗ will perish, while one with
speed at least si∗ will survive with positive probability. So, n ≤ i∗ ≤ 2. Possibly i∗ depends
on the choice of the si.

Our main result is a consequence of two theorems about survival and perishing. The
hypotheses do not require S to be totally discrete. For example, we can also deduce a phase
transition when S = {1, 2, 3, 4} ∪ (2, 3) with the uniform measure on (2, 3). We chose to
state Theorem 1 in a concrete way for the sake of clarity.

Theorem 2. Suppose that S = S′ ∪ {s2, s1} where S′ ⊆ (0, s2) and 0 < s2 < s1 < ∞ . If
µ(S′) > 0 and µ({s2}) ≥ µ({s1}), then

P[b1 survives | s(b1) = s2] > 0.

Theorem 2 says that there are many measures on processes with two fastest speeds in
which the second fastest bullet survives. A counterpart for slow speeds holds: when there
are two slowest speeds, then a bullet with the slowest speed that is fired first perishes a.s.

Theorem 3. Suppose that S = S′′ ∪ {t2, t1} where S′′ ⊆ (t1,∞) and 0 < t2 < t1. If
µ(S′′) > 0 and µ({t1}) ≥ µ({t2}), then

P[b1 survives | s(b1) = t2] = 0.

The proof of Theorem 3 uses Theorem 2. With this technique, it is important that
Theorem 2 applies to arbitrary speed sets, S, with a second largest element. With a general
theorem for survival of, say, a third fastest bullet, our same argument would imply the
second slowest bullet perishes.

An extension of the idea in the proof of Theorem 3 shows that, for certain speed distri-
butions, the probability the first bullet perishes is at least 1/2. The uniform distribution is
not covered by our theorem, but we have this result for a fairly close approximation. First
we state a general theorem, then give the example.

Theorem 4. Suppose that S = [sn, s1] with 0 < sn < s1 <∞, and let µ be any probability
measure on S satisfying

µ([sn, x]) = µ([T (x), s1]), ∀x ∈ S,(1)

with T (x) = (s−1n + s−11 − x−1)−1. In such an (S, µ)-bullet process,

P[b1 survives | s(b1) < s∗] = 0,
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Figure 1. The density function f from Example 5. A bullet process with
speeds sampled according to f has bullets slower than 4/3 perishing a.s.

where s∗ = 2s1sn
s1+sn

is the unique fixed point of T .

Above we have µ([sn, s
∗]) = µ(s∗, s1), and thus µ places half of its mass on speeds less

than or equal to s∗. The statement of Theorem 4 is not so enlightening on its own. It is
best explained via an example.

Example 5. Let S = [1, 2] so that s∗ = 4/3. We will specify µ by a density function
f so that µ(A) =

∫
A
f(x)dx. Say we want f to be uniform on [4/3, 2]. The requirement

that µ[s∗, 1] = 1/2 gives f(x) = 3/4 on this interval. We can now use (1) along with the
fundamental theorem of calculus to deduce the remaining values of f :

f(x) = −f(T (x))T ′(x) =
3

(2− 3x)2
, x ∈ [1, 4/3).

By Theorem 4, the first bullet in a ([1, 2], µ)-bullet process perishes a.s. if s(b1) < 4/3 (see
Figure 1).

Besides resembling the classical bullet problem, there is nothing particularly special about
[1, 2] or the appearance of the uniform measure on [4/3, 2] in the above example. One could
choose any distribution on [sn, s

∗] or [s∗, s1], and (1) would dictate the other half of the
distribution.

1.2. Overview of proofs. The idea for the proof of Theorem 2 is that τ can be recursively
related back to independent copies of itself. In Proposition 8, we show that if s(b1) = s2
and s(b2) = s2 as well, then b1 survives “twice” as long as it would have otherwise. Also,
if s(b1) = s2 and the second bullet is slower than s2, then b2 acts as a shield for b1—thus
increasing the survival time of b1. These arguments hinge on the renewal properties described
in Lemma 6 and Lemma 7.

We then obtain a recursive distributional equation. The analysis from here is inspired
by the approach used in [HJJ15b, HJJ15a, JJ16] to prove that the frog model on trees is
recurrent. It also relates to an elementary argument that the return time of a biased random
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walk is infinite with positive probability. This is described at the beginning of Section 2. The
idea is to transform into a recursion with probability generating functions. In Proposition 8,
we obtain the generating function for some τ∗ � τ and use it to show that τ∗, and thus also
τ , is infinite. We do this in Section 2.

To prove Theorem 3 and Theorem 4, we transform the bullet problem to an arrow process
where all particles start at the same time (see Lemma 12 and Lemma 13). After extending to
all of Z, the arrow process is ergodic. When we assume a slow bullet survives with positive
probability, we can use the Birkhoff ergodic theorem along with monotonicity to obtain a
contradiction. This is done in Section 3.

1.3. Historical discussion and further questions. The bullet process is an annihilating
ballistic system. The study of such systems was initiated by Erdős and Ney in [EN74]. They
considered the transience-recurrence behavior of annihilating simple random walks started
from each integer. Arratia reinitiated the study in one dimension, and also proved results
in higher dimension (see [Arr81, Arr83]). More recently, annihilating Brownian motion has
been studied ([TZ11]). The bullet process is less random than these processes. Curiously, the
amount of randomness, and the difficulty to prove asymptotic results appear to be inversely
related.

The inverse relationship is well-illustrated by annihilating non-backtracking random walks.
This process modifies the law for particles’ paths in annihilating simple random walk to be
non-backtracking. That is, each particle is barred from crossing an edge already included in
its range. Notice that particles are more tethered to their past. Ballistic systems, like the
bullet process and those described below, are more extreme versions of this tethering. This
is the main source of difficulty in analyzing these processes.

Currently we can say very little about the forefather (annihilating non-backtracking
random walk) nor its offspring (annihilating ballistic systems). While annihilating simple
random walks are known to be recurrent on Zd (see [Arr83]), this question is open for the
non-backtracking variant. In fact, understanding the long time behavior is open for any
transient graph. We learned of this question from Itai Benjamini, but its origins are unclear.

Open Question 1. Exhibit a transient graph on which non-backtracking annihilating ran-
dom walk is recurrent.

At the time of writing, there are no published papers on the bullet problem. This dearth
of results is not due to lack of interest—as many researchers have spent time on it—but
rather to the difficulty to prove anything. The problem has been shared widely, but mostly
via word of mouth. This is our best attempt to record the history and current state of the
problem.

The IBM problem of the month of May in 2014 credits a version of the problem to David
Wilson. The question there is to fire exactly 2m bullets with independent uniform(0, 1) speeds
and compute the probability that not a single bullet survives. There is an unpublished result
of Fedja Nazarov that this probability is

∏m
i=1 1− 1

2i . [Private correspondence with Yuval
Peres].

The infinite case is trickier: very few results are known. Kostya Makarychev has, in
aggregate, simulated over a 100 billion bullets. These computations led to the conjecture
that, when the speeds are uniform(0, 1), the first bullet survives with positive probability if
its speed is larger than ≈ .9. Theorem 2 is a first step towards proving such a result. The
next step will be to prove that slower bullets can also survive with positive probability.
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Open Question 2. Suppose that bullets have speeds 0 < sn < sn−1 < · · · < s1 < ∞
sampled uniformly. Show, for large enough n, that if the initial bullet has speed sb.01nc, then
it survives with positive probability.

A theorem along the lines of Open Question 2 would also imply that bullets slower than
sb.99nc perish. This would follow along the lines of the proof of Theorem 3. From there, it
may be possible to interpolate to the uniform distribution. For example, bullet speeds could
be the dyadic numbers in [0, 1]. Even proving that b1 survives when s(b1) = s3 in the above
question would be worthwhile.

As previously mentioned, some (unpublished) progress has been made on a related model
known as the arrow process introduced by Laurent Tournier and Vladas Sidoravicious. It
starts by placing arrows on Z. They are then shot simultaneously at different speeds,
traveling along the real line until a collision occurs. This results in mutual annihilation.

Fix some p < 1 and assign to each arrow an i.i.d. speed. The canonical example here is
speeds in {−1, 0, 1} with 0 being assigned with probability p, and speeds −1 and 1 each with
probability (1− p)/2. Tournier and Sidoravicious can show for sufficiently large p that an
arrow with speed 0 survives with positive probability. Lorenzo Taggi also has an unpublished
proof of this for p > .31. The problem generating the most interest in this process is to show
that, for a small enough p, an arrow with speed 0 also perishes a.s. Simulations suggest
that this happens when p < 1/4 [private communication with Laurent Tournier, Vladas
Sidoravicious, and Lorenzo Taggi].

Open Question 3. In the {−1, 0, 1} arrow process, show that if the probability of a speed-0
arrow is sufficiently small, then every arrow perishes a.s.

Ergodicity and symmetry in the {−1, 0, 1} arrow process ensure that every speed −1 and
1 arrow perishes a.s. We describe the proof of this already well-known fact in more generality
in Proposition 14. The equivalence between the annihilations in the bullet process and those
in a one-sided arrow process is described in Lemma 12 and Lemma 13. We piece these three
statements together to prove Theorem 4.

There are also higher-dimensional versions of the bullet problem. One formulation in Rd
places an ε > 0 ball around each bullet (or cannon ball, rather). A ball is fired from the
origin in Rd every second in a uniformly random direction with, say, uniform(0, 1) speeds.

Open Question 4. Are there values d ≥ 2 and ε > 0 such that the first cannon ball survives
with positive probability?

Another related problem is the meteor problem which is attributed to Itai Benjamini.
Place ε-balls (meteors) in Euclidean space with centers according to a unit intensity Poisson
process. At time 0, each meteor shoots off in a direction chosen uniformly at random. All
meteors have the same speed. When two meteors collide (when their centers come within 2ε
of each other), they annihilate. Further discussion and partial progress for a related process
on trees is in [BFGG+16]. Say that the origin is occupied whenever the center of a meteor
is within ε of it.

Open Question 5. Is the origin a.s. occupied by a meteor?

The elusive nature of these simple processes—bullets, arrows, cannon balls, meteors—
suggests shortcomings in our toolbox for working on annihilating systems. The approach
used here advances our understanding of the bullet problem, and, hopefully, will extend to
these related processes.
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2. Survival of fast bullets

Throughout this section, we assume that speeds come from a probability space S =
S′ ∪ {s1, s2} as in Theorem 2. The first step of the proof relates τ , the minimum index of
the bullet that catches b1 conditional on s(b1) = s2, to independent copies of itself. We
then use probability generating functions to show that any random variable satisfying the
relationship between τ and its copies must be infinite with positive probability.

As a warmup to our proof, we use a similar technique to show that the return time, κ,
to the origin of a biased random walk starting at 1 on the integers is infinite with positive
probability. Let s(b1) be the position of the walk after one step, and suppose s(b1) = 2 with
probability p > 1/2. Conditioning on the first step, we can write

κ
d
= 1{s(b1) = 0}+ 1{s(b1) = 2}(κ1 + κ2 + 1),

where κ1 and κ2 are i.i.d. copies of κ and 1{·} is an indicator function. When s(b1) = 2, the
walk must return to 1, then return to 0. Each takes an independent κ-distributed amount
of steps.

To show that κ is infinite with positive probability, we introduce the probability generating
function g(x) = Exκ. The distributional relationship with κ, κ1, and κ2 implies that g(x) =
(1 − p)x + pxg(x)2. Solving for g(x), and taking the negative root to ensure g(0) = 0, we
have the closed form

g(x) =
1−

√
1− 4p(1− p)x2

2px
.

The series representation, g(x) =
∑

P[κ = j]xj , implies that g(1) = P[κ <∞]. It is simple
to check with the above formula that g(1) = 1−p

p < 1 since p > 1
2 .

The approach to Theorem 2 follows this blueprint. However, we have a distributional
inequality rather than equality. This requires a more subtle renewal property, and then
additional work to push through the argument with generating functions.

2.1. Obtaining the recursive equation. We start with two renewal lemmas. The first
states that the bullet speeds following a maximal speed bullet are independent of any event
involving this bullet.

Lemma 6. If bγ 7→ bj and s(bγ) = s1 with j any fixed index, then the random variables
{γ, s(bγ+1), s(bγ+2), . . .} are independent.

Proof. The bullet bγ has the fastest speed, so the bullets behind it do not interfere. Thus
the event {bγ 7→ b1} depends only on the bullet speeds s(b1), s(b2), . . . , s(bγ). �

A longer range renewal property holds for other annihilations where, outside of a particular
window, the bullet speeds become independent.
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Lemma 7. Let E = E(S, s(bi), s(bj), i, j) = {bi 7→ bj , s(bi), s(bj)} be the event that bi
catches bj with s(bi) and s(bj) known. There exists a finite integer a = a(s(bi), s(bj), i, j)
such that the bullet speeds s(bi+a), s(bi+a+1), . . . are independent of the event E.

Proof. Given i, j, s(bi), and s(bj), let a be such that a maximal speed bullet fired at time
i + a cannot reach bi before bi 7→ bj . The event bi 7→ bj is thus unaffected by the bullet
speeds s(bi+a), s(bi+a+1), . . .. The independence claim follows. �

We can now show that τ stochastically dominates an equation involving independent
copies of itself. Recall that X � Y means there is a coupling with marginals X ′ ∼ X and
Y ′ ∼ Y such that X ′ ≥ Y ′ a.s. (see [SS07]).

Proposition 8. Let τ be the index of the bullet that catches b1 conditional on s(b1) = s2.
Let τ1, . . . , τ5 be i.i.d. copies of τ . Let Sε ∼ Ber(ε) also be independent.

τ � 1{s(b2) < s2}(Sε(τ1 + τ2) + (1− Sε)τ3)(2)

+ 1{s(b2) = s2}(τ4 + τ5)(3)

+ 1{s(b2) = s1}.(4)

Proof. We will establish each line of the above in reverse order by conditioning on the value
of s(b2). When s(b2) = s1 as in (4), we have b2 7→ b1 deterministically. Although τ = 2
on this event, it will simplify our calculations later to use the indicator function as a lower
bound.

When s(b2) = s2 as in (3), suppose that bσ destroys b2. We have translated the original
setup by one index, so σ ∼ τ + 1. Only a bullet with fastest speed can destroy b2, thus
s(bσ) = s1. Lemma 6 ensures that the speeds s(bσ+1), s(bσ+2), . . . are independent of σ.
Suppose that bσ′ 7→ b1. Once again this is the first unobstructed speed-s1 bullet after bσ.
Thus σ′ − σ ∼ τ , and this difference is independent of σ. This is where the term τ4 + τ5 in
(3) comes from (see Figure 2).

The pivotal case is (2), when s(b2) < s2. The idea is that b2 acts as a shield, and causes
an ε-bias for the bullets close behind it to have speed s2. To see this rigorously, suppose that
bγ is the first bullet destroying b2. First note that if γ is infinite with positive probability,
then so is τ and our theorem is proven. Accordingly, let us suppose that γ is a.s. finite.
Also note that in order for bγ 7→ b2 to occur, all of the bullets b3, . . . , bγ−1 must mutually
annihilate. We can then ignore them for the remainder of the argument.

When s(bγ) = s1, it resets the model just as in the s(b2) = s2 case, and b1 survives
until a bullet with index distributed as τ + γ destroys it. There is also the possibility that
s(b2) < s(bγ) < s1. When this occurs, let a = a(s(bγ), s(b2), γ, 2) be the largest index for
which bγ+a could intercept bγ . More precisely, a is the largest index such that, if s(bγ+a) = s1,
then the time at which bγ+a could potentially catch bγ (if uninterrupted) would be earlier
than the time of collision of bγ and b2 . Bullets with indices in the set I = {γ+ 1, . . . , γ+ a}
are dependent upon s(bγ), s(b2), and γ. In particular bullets faster than s(bγ) can survive
to intercept bγ . By Lemma 7, the bullets with indices larger than γ + a are once again
independent (see Figure 3).

The model resets after γ + a. Let us restrict our attention to just the bullets with indices
in I. That is, consider a bullet model with only |I| bullets, with speeds conditioned so that
bγ 7→ b2 with s(b2) < s2. Since bγ 7→ b2, no bullets with speed s1 in I can survive, since such
a bullet would catch bγ before bγ catches b2. As a is finite, there is a positive probability,
ε > 0, that all of the surviving bullets in I will have speed s2. For example, there is a
positive probability of a sequence of alternating between bullets with speeds from S′ (as
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s2

b1

s2

b2bσbσ′

τ4
· · ·

τ5

· · ·

Figure 2. The picture when s(b2) = s2. The bullets b2 and bσ are an-
nihilated by a bullet that is fired a τ -distributed number of seconds after
it.

s2

b1

S′

b2bγbγ+a+1

· · ·| − − − Iγ −−− |· · ·

Figure 3. The picture when s(b2) ∈ S′. If bγ 7→ b2, then there is an
interval of bullets behind it that contains no surviving s1-speed bullets.
With probability at least ε it contains a surviving speed-s2 bullet. Bullets
bγ+a+1 onward are i.i.d.

defined in the statement of Theorem 2) and bullets with speed s2. When this occurs, we
use the argument from (3) to deduce that the index of the destroying bullet of b1 is at least
the sum of two independent copies of τ . This corresponds to τ1 + τ2 in (2).

In all other realizations of the bullet speeds in I, these slower bullets only prolong the
survival of b1. This is because we can repeat this argument for the largest index surviving
bullet in I, and again obtain a new window of speed-s2 bullets, or one of slower bullets.
Thus, it is monotonically worse to remove all of the bullets in I, and restart the model with
s(b1) = s2 and setting s(bi) = s(bγ+a+i) for i ≥ 2. The survival of b1 in this setting is
again distributed as τ . This corresponds to τ3 in (2). We then attach the Bernoulli random
variable Sε to the event that all of the surviving bullets in I have speed s2. Otherwise, we
have established that b1 survives at least a τ distributed amount of time. �

2.2. Analyzing the recursive equation. Our goal now is to show that any random
variable satisfying the recursive distributional inequality in Proposition 8 must be infinite
with positive probability. With ε as in Proposition 8, we introduce an operator A = A(µ)
that acts on nonnegative integer-valued random variables. Given such a random variable
T , we let s ∈ S be sampled according to µ, and Xε ∼Bernoulli(ε), both independent of one
another. Also, we take Ti to be i.i.d. copies of T . We define a new random variable AT to
have distribution

AT d
= 1{s < s2}(Xε(T1 + T2) + (1−Xε)T3) + 1{s = s2}(T4 + T5) + 1{s = s1}.

By Proposition 8, we have

τ � Aτ.(5)

We show that the probability that the first bullet with speed s2 survives, P[τ = ∞], is
positive in the following way. We first prove in Lemma 9 that A is monotonic with respect
to stochastic domination. Then, we show in Lemma 10 that A∞τ is equal to a unique fixed
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point, τ∗. Combine this with (5), and we have τ � τ∗. Finally, we prove in Proposition 11
that any random variable fixed by A is infinite with positive probability. From this it follows
that τ is infinite with positive probability. We go through this rigamarole with τ∗ because,
just as in the warm-up argument with the return time of a biased random walk, we seek an
exact solution to the generating function relationship.

Lemma 9. If T � T ′ then AT � AT ′.

Proof. Follows from the canonical coupling which sets each Ti ≥ T ′i . �

Lemma 10. Let An denote n iterations of A. It holds that A∞τ d
= τ∗ with τ∗ unique and

τ∗
d
= Aτ∗.

Proof. Let Fn(k) = P[Anτ ≤ k] be the cumulative distribution function of Anτ . By the
previous lemma, we have {Fn(k)}∞n=0 is an increasing bounded sequence. Let F (k) denote
its limit. The function F (k) is non-decreasing and belongs to [0, 1]. Thus, F (k) is the density
function of some random variable τ∗. This limiting random variable must be fixed by A
since an additional iteration A(A∞τ) will not change the distribution. �

Note that τ∗ � 1{s = s1}, and so τ∗ is not identically 0. In fact, the following proposition
shows that any fixed point of A is infinite with positive probability.

Proposition 11. With ε as in Proposition 8, so long as µ(S′) > 0 and (1 + ε)µ(S′) +
2µ({s2}) ≥ 1, it holds that P[τ∗ =∞] > 0.

Proof. Let f(x) = Exτ
∗
. Denote f(1−) = limx→1− f(x). Since the coefficients of the power-

series expansion of f are exactly the point probabilities of τ∗, we have f(1−) = 1−P[τ∗ =∞].
Let p3 = µ(S′) and p2 = µ({s2}), and 1− (p3 + p2) = µ({s1}). Using independence, we

can write ExAτ
∗

in terms of f to obtain

f(x) = p3(εf(x)2 + (1− ε)f(x)) + p2f(x)2 + (1− (p3 + p2))x.

We can rewrite this as a quadratic equation in f(x)

0 = Af(x)2 +Bf(x) + C(6)

with

A = p3ε+ p2, B = p3(1− ε)− 1, C = (1− p3 − p2)x.

The discriminant, D(x) = B2 − 4AC, is strictly decreasing, and thus minimized at x = 1.
One can check that D(1) = ((1 + ε)p3 + 2p2 − 1)2 is nonnegative if and only if

(1 + ε)p3 + 2p2 ≥ 1.

This is why we take this as a hypothesis for µ. In this regime, (6) has exactly two solutions
for 0 ≤ x ≤ 1. We use the ‘+’ root, since f(0) = 0. The quadratic formula gives the closed
form

f(x) =
−B +

√
D(x)

2A
.

Recall, we are interested in f(1−). It is straightforward to evaluate the above formula at
x = 1. This yields

f(1−) =
p2

p3ε+ p2
,

which is less than one so long as p3 > 0. Hence the hypothesis µ(S′) > 0. �
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The ε in the above proposition is small and difficult to compute. Still, its existence
expands on the set of (S, µ) for which b1 survives. The hypotheses of Theorem 2 are weaker
than what we prove. We state them as they are for the sake of simplicity. We are now ready
to establish the result.

Proof of Theorem 2. By (5), Lemma 9, and Proposition 11, τ is stochastically larger than a
random variable that is infinite with positive probability. Hence τ is infinite with positive
probability. �

3. Perishing of slow bullets

In this section, we assume that (S, µ) satisfies the hypotheses of Theorem 4. We start
by describing the transformation from the bullet problem to the arrow process mentioned
in the introduction. To facilitate this discussion, we use the notation ai for the arrow at
i ∈ Z, and s(ai) for its speed. Recall that each s(ai) is i.i.d. in R, and each arrow ai begins
moving simultaneously along R at speed s(ai). As with bullets, collisions result in mutual
annihilation. Moreover, we say an arrow process is one-sided if we have arrows only for
i ∈ Z+ := {1, 2, . . .} or only for i ∈ Z− := {−1,−2, . . .}; if we have arrows for all i ∈ Z; we
say the process is two-sided.

3.1. Equivalence to the arrow model. Given a realization of the bullet speeds ~s =
(s(bi))

∞
i=1 we can partition Z+ into the indices of bullets that mutually annihilate one

another, i.e., the indices of the bullets that perish:

B~s =
{
{i ∈ Z+ such that bi 7→ bk or bk 7→ bi} : k ∈ Z+

}
.

Note this is the set of bullets that actually (as opposed to potentially) annihilate one another.
We can define a similar collection for the indices of colliding arrows. Let ~r be a realization of
arrow speeds on Z+. Letting ai 7→ ak denote annihilation of two arrows where i < k, define

A~r =
{
{i ∈ Z+ such that ai 7→ ak or ak 7→ ai} : k ∈ Z+

}
.

We say that ~s and ~r are annihilation-equivalent if A~r = B~s. The following lemma gives a
formula to translate between these two processes.

Lemma 12. ~s and ~r = (1/s(bi))
∞
i=1 are annihilation-equivalent.

Proof. Consider a graphical representation of the bullet problem with the x-axis the time
elapsed, and the y-axis the distance from the origin. Annihilations are then the same as the
intersection of two lines. When we reflect across the line d = t we obtain an arrow process
on Z+ where the bullet bi fired at time t = i now corresponds to the arrow ai with speed
1/s(bi). See Figure 4.

�

We will also need to transform an arrow process on Z− into a bullet problem. Given
~r− = (s(ai))

−∞
i=−1 we say that ~r− and ~s are annihilation-equivalent if −A~r− = B~s.

Lemma 13. Suppose that arrow speeds are in the interval [rn, r1] where rn < r1 are fixed.
Let ~r− be a realization of arrow speeds on Z− and let G(x) = (|rn| + |r1| − x)−1. It holds
that ~r− and a bullet process with realization (G(s(ai)))

−∞
i=−1 are annihilation-equivalent.
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d

t

(a) Fire a bullet each second and plot its
distance from the origin.

t

d

(b) This is equivalent to the arrow process with
the inverse speeds. It is obtained by reflecting

across the line t = d.

Figure 4. Transforming a bullet process into an equivalent arrow process.

Proof. Because arrow annihilations depend only on the relative speeds, we have the same
annihilation behavior when we translate all speeds by the same constant. Shift each arrow
by −(|rn| + |r1|). When we reflect across d = t we obtain a bullet problem with positive
speeds given by s(bi) = G(s(ai)). See Figure 5.

�

3.2. Proving Theorem 3 and Theorem 4. The proofs that bullets perish are proofs by
contradiction. When we assume a slow bullet survives, we show that this implies two arrow
speeds survive with positive probability in a two-sided arrow process. This contradicts the
following proposition that Yuval Peres, Alexandre Stauffer and Lorenzo Taggi shared with
us.

Proposition 14. In an arrow process on Z, there can be at most one arrow speed that
occurs in the process that survives with positive probability.

Proof. Suppose there are two different arrow speeds, say ri and rj that both occur and have
a positive probability of surviving. Translation invariance ensures the arrow process on Z is
ergodic. By the Birkhoff ergodic theorem, we have a positive fraction of arrows with these
two different speeds that are never annihilated. This is a contradiction since there must be
infinitely many surviving arrows with speed rj to the left and to the right of any surviving
arrow with speed ri, and thus they must collide. �

We saw in Lemma 12 that we can transform a bullet process with bullet speeds distributed
as some random variable X ∈ [sn, s1] to a one-sided arrow process on Z+. The arrow speeds
are distributed as 1/X. If we extend the arrow process to all of Z and consider the arrows
in Z−, then we obtain a transformed bullet process. By Lemma 12 and Lemma 13, the
resulting bullet process has speeds distributed as T (X) = G(1/X). We record a few facts
about the transformation T . Each is elementary to verify by hand, so we omit the proof.

Lemma 15. Let T : [sn, s1]→ [sn, s1] be given by T (x) = (s−1n +s−11 −x−1)−1. The function
T has the following properties:
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d

t

(a) Start with an arrow pro-

cess on Z− with speeds be-
tween −1 and 1.

d

t

(b) Translate the arrow

speeds by the same constant
(here by -2).

d

t

(c) Now reflect across the t-

axis, then across the line t =
d to obtain a bullet process

with positive speeds.

Figure 5. Transforming an arrow process on Z− into an equivalent bullet process.

(i) T is decreasing.
(ii) T (s∗) = s∗ for s∗ = 2s1sn

s1+sn
. This fixed point is unique.

(iii) T−1(x) = T (x).
(iv) T (s1) = sn and T (sn) = s1.

Proof of Theorem 3. Suppose that

P[b1 survives | s(b1) = y2] = p > 0.

By monotonicity,

P[b1 survives | s(b1) = y1] = q ≥ p.(7)

Transform the bullet process with s(b1) = y1 to an arrow process on Z+ as in Lemma 12.
Now, extend the arrow process to all of Z. Our hypothesis and equivalence in Lemma 12
ensures that the probability that arrow a1 is never annihilated by an arrow from the right
is p.

The bullet process induced by the arrow process on Z− ∪ {0, 1} has speed distribution
T (s(b1)). By Lemma 15, we know that T (s(b1)) is the second fastest speed in a bullet process
satisfying the hypotheses of Theorem 2. It follows that a1 survives with some probability
from the left.

We can repeat the same reasoning to deduce that arrows with speed 1/y2 also survive
with positive probability. Thus, we have two arrow speeds 1/y1 and 1/y2 that survive with
positive probability in the arrow process on Z. This contradicts Proposition 14.

�

The proof of Theorem 3 used a generic invariance among bullet processes with two fastest
speeds. The hypothesis on µ in Theorem 4 introduces a special symmetry with respect to
the induced two-sided arrow process. Essentially, the arrow process on Z+ is the original
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bullet problem, and the arrow process on Z− ∪ {0, 1} is an inverted version of the original
bullet process (i.e., the slow speeds are now fast). Our measure µ is chosen so that the
inverted model has the same measure on bullet speeds. When we assume an arrow with
slow speed survives, this again gives two arrow speeds that survive with positive probability.
The symmetry allows us to push this argument through for the slowest half of bullets.

Proof of Theorem 4. Let (S, µ) be as in the hypotheses, and have X be distributed according
to µ. To show a contradiction suppose that

P[b1 survives | s(b1) < s∗] = p > 0.(8)

Notice that by monotonicity of the bullet process, this implies that

P[b1 survives | s(b1) ≥ s∗] = q ≥ p.(9)

Transform the bullet process conditioned on s(b1) < s∗ to an arrow process on Z+ as in
Lemma 12. Now, extend the arrow process to all of Z. Our hypothesis and equivalence in
Lemma 12 ensures that the probability a1 is never annihilated by an arrow from the right
conditional on its speed being greater than 1/s∗ is p.

We claim that the requirement at (1) ensures that the probability that a1 is never destroyed
by an arrow from the left is q. Indeed, Lemma 13 ensures that the arrow process restricted
to a1, a0, a−1, . . . is annihilation-equivalent to a bullet process with speeds distributed as
T (s(b1)). The facts that T = T−1 and that T is decreasing (see Lemma 15 (i) and (iii))
imply

P[T (X) ≤ x] = P[X ≥ T (x)] = µ([T (x), s1]).

By the hypothesis µ([sn, x]) = µ([T (x), s1]), we deduce that

P[T (X) ≤ x] = P[X ≤ x].

Thus, T (X) and X are identically distributed. This means that the induced arrow process
from (S, µ) on Z− ∪ {0, 1} is also equivalent to an (S, µ)-bullet process. However, the image
of r1 in this new process has speed T (r1). By Lemma 15 (i) and (ii) we have T (s(b1)) > s(b1).
So, by (9), we have that a1 is not annihilated by any arrow from the left with probability q.

No bullets reaching a1 from the left, and no bullets reaching a1 from the right are
independent events. This independence along with the previous paragraph ensures that a1
survives with probability pq > 0. By symmetry, arrows with speed less than s∗ survive with
positive probability (except the probability of survival from the right is now q and from the
left is now p). We then have different arrow speeds surviving with positive probability, but
this contradicts Proposition 14. �
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